8.1 Sequences and Series

Sequence (Infinite Sequence) $\left\{a_{n}\right\}:$ a function whose domain is the set of positive integers.
a_{n} : the \boldsymbol{n} th term, or general terms, of a sequence

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

Ex. Write the first four terms of each sequence whose general term is given.
a.) $a_{n}=4 n-1$
b.) $c_{n}=(-1)^{n+1}(n+4)$
$a_{1}=$

$$
c_{1}=
$$

$a_{2}=$
$c_{2}=$
$a_{3}=$
$c_{3}=$
$a_{4}=$
$c_{4}=$

Summation Notation

Summation Notation: the sum of the first n terms of a sequence

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

i : the index of summation (i, j, and k are used commonly.)
n : the upper limit of summation
1: the lower limit of summation

Ex. Expand and evaluate the sum:
a.) $\sum_{k=1}^{4}(k-3)(k+2)$
b.) $\sum_{i=2}^{4}\left(-\frac{1}{3}\right)^{i}$

Ex. Express each sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
a.) $1^{4}+2^{4}+3^{4}+\cdots+12^{4}$
b.) $\frac{1}{9}+\frac{2}{9^{2}}+\frac{3}{9^{3}}+\cdots+\frac{n}{9^{n}}$
c.) $3+\frac{1}{2}+\frac{5}{27}+\frac{3}{32}+\cdots+\frac{n+2}{n^{3}}$

