8.1 Sequences and Series

Sequence (Infinite Sequence) $\{a_n\}$: a function whose domain is the set of positive integers.

a_n : **the** *n***th term**, or **general terms**, of a sequence

 $a_1, a_2, a_3, a_4, \dots, a_n, \dots$

Ex. Write the first four terms of each sequence whose general term is given.

a.) $a_n = 4n - 1$	b.) $c_n = (-1)^{n+1} (n+4)$
$a_1 =$	$c_1 =$
$a_2 =$	$c_2 =$
$a_3 =$	$c_{3} =$
$a_4 =$	$c_4 =$

***** Summation Notation

Summation Notation: the sum of the first *n* terms of a sequence

 $\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + a_4 + \dots + a_n$ *i*: the index of summation (*i*, *j*, and *k* are used commonly.) *n*: the upper limit of summation 1: the lower limit of summation

Ex. Expand and evaluate the sum:

a.)
$$\sum_{k=1}^{4} (k-3)(k+2)$$

b.)
$$\sum_{i=2}^{4} \left(-\frac{1}{3}\right)^{i}$$

Ex. Express each sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.

a.) $1^4 + 2^4 + 3^4 + \dots + 12^4$

b.)
$$\frac{1}{9} + \frac{2}{9^2} + \frac{3}{9^3} + \dots + \frac{n}{9^n}$$

c.)
$$3 + \frac{1}{2} + \frac{5}{27} + \frac{3}{32} + \dots + \frac{n+2}{n^3}$$